Complementary Acyclic Weak Domination Preserving Sets

N. Saradha^a,V.Swaminathan^b And K. Angammal^c

^AAssistant Professor, Department Of Mathematics, SCSVMV University, Enathur, Kanchipuram, Tamilnadu, India. ^BHead & Coordinator, Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai, Tamilnadu, India. ^CResearch Scholar, Department of Mathematics, SCSVMV University, Enathur, Kanchipuram, Tamilnadu, India.

Abstract: Let $G = (V, E)$ be a simple graph. A subset D of $V(G)$ is called complementary acyclic weak domination preserving set of G (c-awdp set of G) if $< V - D >$ is acyclic and $\gamma_w(\langle D \rangle) = \gamma_w(G)$. The minimum cardinality of a c-awdp set in G is called the complementary acyclic weak domination preserving number of G and denoted by c-awdpn(G). A c-awdp set of G of cardinality c-awdpn(G) is called a c-awdpn-set of G. In this paper, we introduce and discuss the concept of complementary acyclic weak domination preserving sets. **Keywords**: Complementary acyclic weak domination preserving set,complementary acyclic weak domination preserving number.

I. INTRODUCTION

By a graph we mean, simple and undirected graph $G(V, E)$ where V denotes its vertex set and E its edge set. Degree of a vertex u is denoted by $d(u)$. The maximum degree of a graph G is denoted by $\Delta(G)$. We denote a cycle on n vertices by C_n , a path on n vertices by P_n and a complete graph on n vertices by K_n . A graph G is connected if any two vertices of G are connected by a path. A maximal connected sub graph of a graph G

is called a component of G. The number of components of G is denoted by $\omega(G)$. The complement G of G is the graph with vertex set V in which two vertices are adjacent if and only if they are not adjacent in G. A graph G is said to be acyclic if it has no cycles. A tree is a connected acyclic graph. A bipartite graph is a graph whose vertex set can be partitioned into two disjoint non empty sets V_1 and V_2 such that every edge has one end in V_1 and another end in V_2 . A complete bipartite graph is a bipartite graph where each vertex of V_1 is adjacent to every vertex in V_2 . The complete bipartite graph with partitions of order $|V_1| = m$ and $|V_2| = n$, denoted by K_{mn} . A star denoted by $K_{1,n-1}$ is a tree with one root vertex and n-1 pendant vertices. A bistar, denoted by $D(r,s)$ is the graph obtained by joining the root vertices of the stars $K_{1,r}$ and $K_{1,s}$. A wheel graph denoted by W_n is a graph with n vertices formed by joining a single vertex to all vertices of C_{n-1} . A helm graph, denoted by H_n is a graph obtained from the wheel W_n by attaching a pendant vertex to each vertex in the outer cycle of W_n . Corona of two graphs G_1 and G_2 , denoted by $G_1 \circ G_2$ is the graph obtained by taking one copy of G_1 and $|V(G_1)|$ copies of G_2 in which ith vertex of G₁ is joined to every vertex in the ith copy of G₂. If D is a subset of V, then $\langle D \rangle$ denoted the vertex induced sub graph of G induced by D. The open neighborhood of a set D of vertices of graph G, denoted by N(D) is the set of all vertices adjacent to some vertex in D, and $N(D) \cup D$ is called the closed neighborhood of D, denoted by N[D]. The diameter of a connected graph is the maximum distance between two vertices in G and is denoted by diam(G). A cut-vertex of a graph G is a vertex whose removal increases the number of components. A vertex cut of a connected graph G is a set of vertices whose removal results in a disconnected graph. The connectivity or vertex connectivity of a graph G, denoted by k(G) (where G is not complete) is the size of a smallest vertex cut. A connected sub graph H of a connected graph G is called a H-cut if $\omega(G-H) \geq 2$. For any real number $\lfloor x \rfloor$ denotes the largest integer less than or equal to x.

A subset D of V is called a dominating set of G if every vertex in V-D is adjacent to at least one vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all dominating set D in G. A dominating set D of G is called a weak dominating set of G if for every $v \in V - D$ there exist a vertex $u \in D$ such that $uv \in V(G)$ and $d(u) \leq d(v)$. The minimum cardinality taken over all weak dominating sets is the weak domination number and is denoted by $\gamma_w(G)$.

In this paper, we use this idea to develop the concept of complementary acyclic weak domination preserving number of a graph.

Complementary Acyclic Weak Domination Preserving:

Definition: 2.1 A subset D of G is called a complementary acyclic weak domination preserving set of G (c-awdp set of G) if $\langle V - D \rangle$ is acyclic and $\gamma_w(\langle D \rangle) = \gamma_w(G)$. The minimum cardinality of a c-awdp set in G is called the complementary acyclic weak domination preserving number of G and is denoted by c-awdpn(G). A c-awdp set of G of cardinality c-awdpn(G) is called a c-awdpn- set of G. **Example: 2.2**

Fig 2.1

 $\{v_1, v_2\}$ is a complementary acyclic weak domination preserving set of G.

Remark: 2.3 Let G be a simple graph. If c-awdp set of G is independent, then $\gamma(G) = 1$.

Remark: 2.4 Since V(G) is c-awdp set, the existence of a c-awdp sets is guaranteed in any graph.

Remark: 2.5 The c-awdp set property is superhereditary, since any super set of a c-awdp set is a c-awdp set. Hence a c-awdp set is minimal if and only if it is 1-minimal.

II. MAIN RESULT

c-awdpn for standard graphs

- **1.** c-awdpn(K_2) = n 1.
- **2.** c-awdpn(K_n) = n 2, n ≥ 3
- **3.** c-awdpn($K_{1,n}$) = n.
- **4.** c-awdpn($K_{m,n}$) = max {m, n}.
- **5.** c-awdpn($D_{m,n}$) = m +n 2.

Theorem: 3.1 For any Path P_n , $n \geq 3$

$$
c - awdpn(P_n) = \left\lceil \frac{n}{3} \right\rceil \text{ if } n \equiv 1 \text{ (mod 3)}
$$

$$
= \left\lceil \frac{n}{3} \right\rceil + 1 \text{ if } n \equiv 0 \text{ or } 2 \text{ (mod 3)}
$$

Theorem: 3.2 For any cycle C_n , $n \geq 3$

$$
c - awdpn(C_n) = \left\lceil \frac{n}{3} \right\rceil \text{ if } n \equiv 1 \text{ (mod 3)}
$$

$$
= \left\lceil \frac{n}{3} \right\rceil + 1 \text{ if } n \equiv 0 \text{ or } 2 \text{ (mod 3)}
$$

Theorem: 3.3 For any wheel W_n, $n \geq 4$

$$
c - awdpn(W_n) = \frac{n}{2} \text{ if } n \text{ is even}
$$

$$
= \frac{n-1}{2} \text{ if } n \text{ is odd}
$$

Observation 3.4 A c-awdpn-set of a connected graph G need not induce a connected sub graph.

Fig 3.1

 $D = \{v_2, v_5, v_8\}$ is a c-awdpn-set which is disconnected.

Observation: 3.6 $\gamma_w(G) = c - awdpn(G)$ if and only if any c-awdpn-set induces a complete subgraph. **Proof:** By hypothesis $c = awdpn(G) = \gamma_w(G)$. Let D be a c-awdpn-set of G. c *-* awdpn(G) = $|D|$ = $\gamma_w(G)$ = $\gamma_w(\langle D \rangle)$. Therefore $\langle D \rangle$ is a complete sub graph.

Conversely, let any c-awdpn-set induces a complete sub graph. Let D be a c-awdpn-set of G. $D = \gamma_w(\langle D \rangle = \gamma_w(G)$. That is c – $awdpn(G) = \gamma_w(G)$. **Example: 3.7**

 Fig 3.2

D={ v_2 , v_5 , v_6 } is a weak dominating set.

 $\gamma_w(\langle D \rangle) = 3$ and also D is a c-awdpn-set.

Remark: 3.8 If $\gamma_w(G) = \gamma(G)$, then $wdpn(G) = \gamma_w(G)$. But c-awdpn(G) may be greater than $\gamma_w(G)$. **Example: 3.9**

 $D = \{v_2, v_5, v_6\}, \gamma_w(G) = \gamma(G) = 2$ and c-awdpn(G) = 3.

 Fig 3.3

Definition: 3.10 A subset D of G is called a minimal c-awdp set of G if D is a c-awdp set of G and no subset of D is a c-awdp set of G.

Theorem: 3.11 Let D be a c-awdp set of G. D is minimal if and only if for any u in D, either $V - (D - \{u\})$ contains a cycle or $\gamma_w(\big\langle D-\lbrace u \rbrace \big\rangle) \prec \gamma_w(G)$.

Proof: obvious.

Definition: 3.12 The maximum cardinality of a minimum c-awdp set of G is called the upper c-awdp number of G and is denoted by c-awdpN(G).

Remark: 3.13 There are graphs G with c-awdpn(G) < c-awdpN(G).

III. FINE C-AWDP GRAPHS

Definition: 4.1 A graph G is a fine c-awdp graph if all minimal c-awdp sets have the same cardinality. **Example: 4.2** (i) $K_{n,n}$ is a fine c-awdp graph. (ii) All cycles are fine c-awdp graphs.

Theorem: 4.3 Let G₁ and G₂ be graphs. Suppose G₁ contains a cycle and G₂ is acyclic and $\gamma_w(G_1) \leq \gamma_w(G_2)$. Then $G_1 \cup G_2$ is a fine c-awdp graph if and only if G_2 is a fine c-awdp graph and all minimal c-a sets of G_1 have equal cardinality.

Proof: Suppose G₁ contains a cycle and G₂ is acyclic and $\gamma_w(G_1) \leq \gamma_w(G_2)$. Any c-awdp set of G₁ is a c-a set of $G_1 \cup G_2$ but it is not a wdp set $G_1 \cup G_2$. Let D_2 be a minimal c-awdp set of G_2 and D_1 be a minimal c-a set of G₁. Clearly, $\gamma_w(D_2) = \gamma_w(G_2) \succ \gamma_w(G_1) \ge \gamma_w(D_1)$. Therefore $D_1 \cup D_2$ is a minimal c-awdp set of $G_1 \cup G_2$. Let $D = D_1 \cup D_2$, where $D_1 \subseteq V(G_1)$ and $D_2 \subseteq V(G_2)$. Since D is a c-a set of $G_1 \cup G_2$, D_1 is a c-a set of G_1 and D_2 is a c-a set $\gamma_w(D) = \gamma_w(D_1 \cup D_2) = \max{\gamma_w(D_1), \gamma_w(D_2)} = \gamma_w(G_1 \cup G_2) = \gamma_w(G_2)$. If $\gamma_w(D_1) > \gamma_w(D_2)$ then $\gamma_w(D_1) = \gamma_w(G_2) > \gamma_w(G_1)$, a contradiction, since D_1 is a subset of $V(G_1)$. Therefore $\gamma_w(D_1) \le \gamma_w(D_2)$. Therefore $\gamma_w(D_1) = \gamma_w(D_2) = \gamma_w(G_2)$. Therefore D_2 is a c-awdp set of G_2 and D_1 is c-a set of G_1 . Since D is minimal, D_1 and D_2 are also minimal. Thus, $G_1 \cup G_2$ is a fine c-awdp graph if and only if G_2 is a fine c-awdp graph and all minimal c-a set of G_1 have equal cardinality. Similar argument can be given if G_1 contains a cycle and G_2 is a cyclic.

IV. CONCLUSION

We found complementary acyclic weak domination preserving number for some standard graphs and general graphs.

REFERENCES

- [1]. Frank Harary, Graph Theory, Narosa Publishing House, Reprint 1997.
- [2]. Gary Chartrand, Ping Zhang Chromatic Graph Theory CRC press, Taylor Dr. Francis group A chapman and Hall book, 2009.
- [3]. Teresa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc,new York,Basel,Hong Kong 1998.
- [4]. S.M. Hedetniemi, S.T.Hedetniemi, D.F Rall, Acyclic Domination,Discrete Mathematics 222(2000), 151-165.
- [5]. M.Poopalaranjani, On some coloring and domination parameters in graphs, Ph.D Thesis, Bharathidasan University, India, 2006.
- [6]. M.Valliammal, S.P.Subbiah, V.Swaminathan, Complementary acyclic chromatic preserving sets in graphs, Vol.3, 2013, No.8, 667 – 678.